Software Development
Essentials

Process, Structures, Tools and Practices



Development Processes

* Agile Methodologies:
o Scrum: widely used
o XP: developer focused (Extreme)
o Kanban: priority based

e Continuous Delivery:
o Cl: merge code as soon as ready

o CD: deploy frequently (daily or weekly)
o Feature flags: control deployed but non-released features

* Mob Programming:
o Collaborative coding
o Knowledge transfer



People in Development

* Delivery Teams:
o Responsible for delivering the product
o Stream aligned teams

* Discovery Teams:
o Explore and experiment with new ideas
o Help design features and investigate options

* DevOps:
o Operations tasks owned by the teams themselves
o Infrastructure provision with self service

* More: Team Topology, Spotify Model



Technology and Tools

* Source Control Management (SCM):

o Azure DevOps: Integrated suite of tools for managing development projects,
including SCM

o GitHub: Popular platform for hosting and collaborating on Git repositories,
with features like pull requests and code reviews

o GitLab: Comprehensive DevOps platform with built-in SCM, CI/CD, and project
management

o BitBucket: Code hosting and collaboration platform with support for Git and
Mercurial repositories



Technology and Tools

* CI/CD (Build/ Test/ Deploy/ Release):
o Azure DevOps Pipelines: Continuous integration and delivery (CI/CD) service
for building, testing, and deploying applications

o GitHub Actions: Workflow automation and CI/CD capabilities integrated with
GitHub repositories

o Jenkins: Open-source automation server for building, testing, and deploying
code

o GitLab CI/CD: Integrated CI/CD features within the GitLab platform for
automating build, test, and deployment processes



Technology and Tools

* Code Quality Tools:

o SonarQube: Continuous inspection tool for code quality and security,
supporting multiple programming languages

o Linters: Static code analysis tools for coding standards errors (ESLint, Pylint,
Rosyln for C#)

e Additional Tools:
o Docker: Containerization platform for packaging and deploying applications
o Kubernetes: Container orchestration platform
o Terraform: Infrastructure as Code (laC) tool for provisioning infrastructure
o etc



Service Integration

* |dentity and Access Management (IAM)
o Authentication/ Authorization: SSO, OAuth, OIDC, SAML, LDAP
o Tools: Keycloak, Duende, ComponentSpace

* APl Gateway
o Handling Authentication and Reverse Proxy
o Tools: Ocelot, Kong, Nginx, AWS, Azure

* Service Communication
o Asynchronous: Pub-sub messages/events

o Synchronous: Request-response through queues or RESTful APIs
o Tools: RabbitMQ, Kafka, HTTP, Polly



Good Developer Practices

* Logs
o Add logs to critical paths and edge cases
o Follow standard log formats and levels

* Comments
o What and how to comment
o Write self-documenting code where possible
o Use comments to explain the "why" behind complex logic or decisions

* Debugging Skills
o Profiling, diagnostics, breakpoints, logging, benchmarking
o Network tools, browser dev tools



Good Developer Practices

* Tests
o Unit and integration tests for good design
o Aim for high test coverage but prioritize meaningful tests over quantity
o Consider Test-Driven Development (TDD) principles where applicable

* Refactoring
o Continuous improvement of code
o Break down large functions/methods into smaller, manageable pieces
o Ensure code readability and maintainability

* Design and Architecture
o Understanding the bigger picture
o Learn and apply design patterns (e.g., Singleton, Builder, Observer)
o Understand SOLID principles



Good Developer Practices

* Know One Level Deeper
o Understand the abstractions you're working on top of
o Gain knowledge of lower-level programming languages or system operations
o Study the underlying frameworks and libraries

* Collaboration
o Teamwork, shared knowledge, and helping others
o Participate in code reviews and pair programming

o Use collaborative tools effectively (e.g., version control, project management
software)

* Documentation
o Keep project documentation up-to-date

o Document APIs, libraries, and complex algorithms
o Maintain clear and concise doc files like Readme



Good Developer Practices

* Create side projects:
o Lots of them
o Effective way to learn

* Self-Care
o Avoiding burnout
o Take regular breaks and manage your workload
o Practice mindfulness and stress-reducing techniques

* Learning and Growth
o Continuously improve your skills
o Attend workshops, conferences, and online courses
o Engage with the developer community



Good Developer Practices

* Security
o Validate and sanitize user input
o Use encryption for sensitive data
o Keep dependencies up-to-date and patch early

e Performance Optimization
o Keep an eye on performance when coding
o Profile your application to identify bottlenecks
o Consider caching and load balancing strategies



Collaboration Tools

* Microsoft Teams: Calendar, calls, messaging

e Azure DevOps Boards: SCM integration, work item tracking

* Google Meets: Calendar, calls

* Cardboard: Planning, estimation

* Slack: Messaging, file sharing, integrations with other tools

e Zoom: Video conferencing, webinars, virtual meetings

e Jira: Issue and project tracking, Agile development support

* Confluence: Collaborative documentation, knowledge sharing

* Miro/ Lucid: Online whiteboard for brainstorming and collaboration



Architecture (micro-services)

* Document development deployment tasks
o C4 Model: Standard documentation for high level overview + low level details
o Context Map: Domain model, language, boundaries

* Example:
o Frontend Apps: web + mobile apps
o Gateway: FE integration point
o IAM: Authentication + Authorization service
o Micro-services: All backend apps behind gateway
o Service Bus: Internal service to service com
o Others: caching, logging, monitoring, databases



Example: Portal
System Overview [angular]

Backoffice App
[angular]

Platform Tools
[web/ console]

IAM (SSO)

[keycloak]

APl Gateway
[Nginx Gateway]

Blob Storage
[file server]

sub-systems

Distrib. Cache DMS
[redis] [dotnet]

Email + SMS
[services] FMS

[spring boot]

HRMS
[python]

Notification Others...

[spring boot] [...]

Servic2 Bus
[rabbit-mq]

Reporting
[tableau]

Log + Audit
[syslog-ng]




Vertical Slice Structure

 Features as Slices:

o Organize code by feature rather than by technical layers
o Each feature slice contains its folder

 Ease of Adding/Removing Features:
o Simplifies feature management and reduces dependencies
o Allows for better scalability and maintainability

e Separation of Concerns:
o Each slice is self-contained and focuses on a single feature or functionality
o Promotes single responsibility principle (SRP)
o Enables feature-specific testing



Vertical Slice Structure

* Modular Design:
o Encourages a modular design approach
o Allows for easier refactoring and evolution of the codebase
o Reduces tight coupling between different parts of the application

o Makes it easier to replace or update components without affecting the entire
system



Vertical Slice Structure

* Example [Feature: User Management]
o Controller: Handles HTTP requests and responses
o Handler: Contains business logic for user management
o Models: Defines data structures and entities related to users
o Services: Implements specific functionalities (e.g., user authentication)
o Repositories: Interacts with the database



