
Software Development 
Essentials

Process, Structures, Tools and Practices



Development Processes

• Agile Methodologies: 
o Scrum: widely used
oXP: developer focused (Extreme)
oKanban: priority based

• Continuous Delivery: 
oCI: merge code as soon as ready 
oCD: deploy frequently (daily or weekly)
o Feature flags: control deployed but non-released features

• Mob Programming: 
oCollaborative coding
oKnowledge transfer



People in Development

• Delivery Teams: 
oResponsible for delivering the product
o Stream aligned teams

• Discovery Teams: 
o Explore and experiment with new ideas
oHelp design features and investigate options

• DevOps: 
oOperations tasks owned by the teams themselves
o Infrastructure provision with self service

• More: Team Topology, Spotify Model



Technology and Tools

• Source Control Management (SCM):
oAzure DevOps: Integrated suite of tools for managing development projects, 

including SCM

oGitHub: Popular platform for hosting and collaborating on Git repositories, 
with features like pull requests and code reviews

oGitLab: Comprehensive DevOps platform with built-in SCM, CI/CD, and project 
management

oBitBucket: Code hosting and collaboration platform with support for Git and 
Mercurial repositories



Technology and Tools

• CI/CD (Build/ Test/ Deploy/ Release):
oAzure DevOps Pipelines: Continuous integration and delivery (CI/CD) service 

for building, testing, and deploying applications

oGitHub Actions: Workflow automation and CI/CD capabilities integrated with 
GitHub repositories

o Jenkins: Open-source automation server for building, testing, and deploying 
code

oGitLab CI/CD: Integrated CI/CD features within the GitLab platform for 
automating build, test, and deployment processes



Technology and Tools

• Code Quality Tools:
o SonarQube: Continuous inspection tool for code quality and security, 

supporting multiple programming languages

o Linters: Static code analysis tools for coding standards errors (ESLint, Pylint, 
Rosyln for C#)

• Additional Tools:
oDocker: Containerization platform for packaging and deploying applications

oKubernetes: Container orchestration platform 

o Terraform: Infrastructure as Code (IaC) tool for provisioning infrastructure

o etc



Service Integration

• Identity and Access Management (IAM)
o Authentication/ Authorization: SSO, OAuth, OIDC, SAML, LDAP
o Tools: Keycloak, Duende, ComponentSpace

• API Gateway
o Handling Authentication and Reverse Proxy
o Tools: Ocelot, Kong, Nginx, AWS, Azure

• Service Communication
o Asynchronous: Pub-sub messages/events
o Synchronous: Request-response through queues or RESTful APIs
o Tools: RabbitMQ, Kafka, HTTP, Polly



Good Developer Practices

• Logs
oAdd logs to critical paths and edge cases

o Follow standard log formats and levels

• Comments
oWhat and how to comment

oWrite self-documenting code where possible

oUse comments to explain the "why" behind complex logic or decisions

• Debugging Skills
oProfiling, diagnostics, breakpoints, logging, benchmarking

oNetwork tools, browser dev tools



Good Developer Practices

• Tests
o Unit and integration tests for good design
o Aim for high test coverage but prioritize meaningful tests over quantity
o Consider Test-Driven Development (TDD) principles where applicable

• Refactoring
o Continuous improvement of code
o Break down large functions/methods into smaller, manageable pieces
o Ensure code readability and maintainability

• Design and Architecture
o Understanding the bigger picture
o Learn and apply design patterns (e.g., Singleton, Builder, Observer)
o Understand SOLID principles 



Good Developer Practices

• Know One Level Deeper
o Understand the abstractions you're working on top of
o Gain knowledge of lower-level programming languages or system operations
o Study the underlying frameworks and libraries

• Collaboration
o Teamwork, shared knowledge, and helping others
o Participate in code reviews and pair programming
o Use collaborative tools effectively (e.g., version control, project management 

software)

• Documentation
o Keep project documentation up-to-date
o Document APIs, libraries, and complex algorithms
o Maintain clear and concise doc files like Readme



Good Developer Practices

• Create side projects: 
o Lots of them
o Effective way to learn

• Self-Care
oAvoiding burnout
o Take regular breaks and manage your workload
oPractice mindfulness and stress-reducing techniques

• Learning and Growth
oContinuously improve your skills
oAttend workshops, conferences, and online courses
o Engage with the developer community 



Good Developer Practices

• Security 
oValidate and sanitize user input

oUse encryption for sensitive data

oKeep dependencies up-to-date and patch early

• Performance Optimization
oKeep an eye on performance when coding

oProfile your application to identify bottlenecks

oConsider caching and load balancing strategies



Collaboration Tools

• Microsoft Teams: Calendar, calls, messaging

• Azure DevOps Boards: SCM integration, work item tracking

• Google Meets: Calendar, calls

• Cardboard: Planning, estimation

• Slack: Messaging, file sharing, integrations with other tools

• Zoom: Video conferencing, webinars, virtual meetings

• Jira: Issue and project tracking, Agile development support

• Confluence: Collaborative documentation, knowledge sharing

• Miro/ Lucid: Online whiteboard for brainstorming and collaboration



Architecture (micro-services)

• Document development deployment tasks
oC4 Model: Standard documentation for high level overview + low level details
oContext Map: Domain model, language, boundaries

• Example:
o Frontend Apps: web + mobile apps
oGateway: FE integration point
o IAM: Authentication + Authorization service
oMicro-services: All backend apps behind gateway
o Service Bus: Internal service to service com
oOthers: caching, logging, monitoring, databases



sub-systems

Portal
[angular]

Backoffice App
[angular]

Platform Tools
[web/ console]

API Gateway
[Nginx Gateway]

IAM (SSO)
[keycloak]

Blob Storage
[file server]

FMS
[spring boot]

HRMS
[python]

VMS
[php]

... ...

Service Bus
[rabbit-mq]

Reporting 
[tableau]

Distrib. Cache 
[redis]

Example: 
System Overview

Email + SMS
[services]

DMS
[dotnet]

Notification
[spring boot]

Others...
[...]

Log + Audit 
[syslog-ng]



Vertical Slice Structure

• Features as Slices:
oOrganize code by feature rather than by technical layers
o Each feature slice contains its folder

• Ease of Adding/Removing Features:
o Simplifies feature management and reduces dependencies
oAllows for better scalability and maintainability

• Separation of Concerns:
o Each slice is self-contained and focuses on a single feature or functionality
oPromotes single responsibility principle (SRP)
o Enables feature-specific testing



Vertical Slice Structure

• Modular Design:
o Encourages a modular design approach

oAllows for easier refactoring and evolution of the codebase

oReduces tight coupling between different parts of the application

oMakes it easier to replace or update components without affecting the entire 
system



Vertical Slice Structure

• Example [Feature: User Management]
oController: Handles HTTP requests and responses

oHandler: Contains business logic for user management

oModels: Defines data structures and entities related to users

o Services: Implements specific functionalities (e.g., user authentication)

oRepositories: Interacts with the database


